Web2 vs Web3
Last updated
Last updated
Web2 refers to the version of the internet most of us know today. An internet dominated by companies that provide services in exchange for your personal data. Web3, in the context of Electroneum, refers to decentralized apps that run on the blockchain. These are apps that allow anyone to participate without monetising their personal data.
Looking for a more beginner-friendly resource? See Ethereum's introduction to web3.
Anyone who is on the network has permission to use it – or in other words, permission isn't required.
No one can block you or deny you access to the network.
Payments are built in via the native token, ETN. Payments being intrinsically built into the evolution of the internet is an intrinsic benefit because of reduced costs, decentralisation, transparency, security, uniformity, programmability, customisability etc. This is in contrast to web2, where payments mechanisms are extrinsic to the base layer of the internet
Electroneum is turing-complete, meaning you can program pretty much anything.
Web2 | Web3 |
---|---|
This doesn't mean that all services need to be turned into a dapp. These examples are illustrative of differences between web2 and web3 services.
Web3 has some limitations right now:
Scalability – transactions are slower on web3 because they're decentralized. Changes to state, like a payment, need to be processed by a node and propagated throughout the network.
UX – interacting with web3 applications can require extra steps, software, and education. This can be a hurdle to adoption.
Accessibility – the lack of integration across web browsers makes web3 less accessible to most users.
Cost – most successful dapps put very small portions of their code on the blockchain as it can be expensive because there is a lot of information to write to the evm, and also when there is competition for making deployments on chain, costs are driven higher.
In the table below, we list some of the broad-stroke advantages and disadvantages of centralized and decentralized digital networks.
Note that these are general patterns that may not hold true in every network. Furthermore, in reality the degree to which a network is centralized/decentralized lies on a spectrum; no network is entirely centralized or entirely decentralized.
What is Web3? - ethereum.org
The Architecture of a Web 3.0 application↗ - Preethi Kasireddy
The Meaning of Decentralization↗ Feb 6, 2017 - Vitalik Buterin
Why Decentralization Matters↗ Feb 18, 2018 - Chris Dixon
What Is Web 3.0 & Why It Matters↗ Dec 31, 2019 - Max Mersch and Richard Muirhead
Why We Need Web 3.0↗ Sep 12, 2018 - Gavin Wood
Centralized Systems | Decentralized Systems |
---|---|
Twitter can censor any account or tweet
Web3 tweets would be uncensorable because control is decentralized
Payment service may decide to not allow payments for certain types of work
Web3 payment apps require no personal data and can't prevent payments
Servers for gig-economy apps could go down and affect worker income
Electroneum, a decentralized network of 1000s of computers can serve information relating to decentralised applications at any time.most
Low network diameter (all participants are connected to a central authority); information propagates quickly, as propagation is handled by a central authority with lots of computational resources.
The furthest participants on the network may potentially be many edges away from each other. Information broadcast from one side of the network may take a long time to reach the other side.
Usually higher performance (higher throughput, fewer total computational resources expended) and easier to implement.
Usually lower performance (lower throughput, more total computational resources expended) and more complex to implement.
In the event of conflicting data, resolution is clear and easy: the ultimate source of truth is the central authority.
A protocol (often complex) is needed for dispute resolution, if peers make conflicting claims about the state of data which participants are meant to be synchronised on.
Single point of failure: malicious actors may be able to take down the network by targeting the central authority.
No single point of failure: network can still function even if a large proportion of participants are attacked/taken out.
Coordination among network participants is much easier, and is handled by a central authority. Central authority can compel network participants to adopt upgrades, protocol updates, etc., with very little friction.
Coordination is often difficult, as no single agent has the final say in network-level decisions, protocol upgrades, etc. In the worst case, network is prone to fracturing when there are disagreements about protocol changes.
Central authority can censor data, potentially cutting off parts of the network from interacting with the rest of the network.
Censorship is much harder, as information has many ways to propagate across the network.
Participation in the network is controlled by the central authority.
Anyone can participate in the network; there are no “gatekeepers.” Ideally, the cost of participation is very low.